

A Key Management Scheme for DPA-Protected Authenticated Encryption

<u>Mostafa Taha</u> and Patrick Schaumont Virginia Tech DIAC-2013

This research was supported in part by the VT-MENA program of Egypt, and by NSF grant no. 1115839.

Classical Cryptography

Side-Channel Analysis

Side-Channel Analysis

Differential Power Analysis

$$\overset{\mathsf{P}}{\overset{}{\overset{}}_{\mathsf{K}}} \xrightarrow{\overset{}{\overset{}}{\overset{}}} \overset{\mathsf{S}}{\overset{}} \xrightarrow{\overset{}}{\overset{}} S(P \oplus K)$$

- The key in DPA is to find a sensitive intermediate variable that depends on:
 - a controllable/observable input.
 - and a fixed unknown.

Where the unknown is affected by a small part of the key.

1- Hardware Protection

1- Hardware Protection

• Typically at High Cost (typically 2x).

2- Leakage-Resilient Cryptography

2- Leakage-Resilient Cryptography

New Primitive Special Mode of operation (compatible with current modes)

Leakage-Resilient Cryptographic Primitive

- Stream Ciphers: [DP08, P09, YSPY10]
- Block Ciphers: [FPS12]
- Digital Signatures: [BSW11]
- Public-Key Encryption: [NS12] and many more

Leakage-Resilient Cryptographic Primitive

- Stream Ciphers: [DP08, P09, YSPY10]
- Block Ciphers: [FPS12]
- Digital Signatures: [BSW11]
- Public-Key Encryption: [NS12] and many more

However:

- The assumptions used are controversial.
- High-overhead initialization procedure.
- Not a current solution (still needs standardization).

Leakage-Resilient Mode of Operation

• Are current modes DPA-protected?

Leakage-Resilient Mode of Operation

- Are current modes DPA-protected?
- No
 - Different design requirement.
 - The IV/nonce is not secret, hence the same attack methodology can be used.

Leakage-Resilient Mode of Operation

- Are current modes DPA-protected?
- No
 - Different design requirement.
 - The IV/nonce is not secret, hence the same attack methodology can be used.
- Research Goals:
 - Current: Design a compatible DPA-protection add-on.
 - Future: Include the DPA-protection in a new AE mode.

Outline

Introduction

- Design Model
- Security Requirements of the New Scheme
- Previous Work
- NLFSR-Based Scheme
- Concluding Remarks

Invent the Future

Goal: protection against any "differential" attack. This is NOT shifting the problem, but separating it. VirginiaTech

Invent the Future

Goal: protection against any "differential" attack. This is NOT shifting the problem, but separating it. VirginiaTech

Invent the Future

Security Requirements

- Initialization:
 - Maximum Diffusion.
 - Compatible with current AES modes .
 (no additional secrets or exchanged variables)
 - One-wayness.
 - DPA-hard, without depending on the Hardware.
 - Small hardware overhead.

Security Requirements

- Key Propagation:
 - Non-linearity.
 - Prevent divide-and-conquer.
 - Forward Security (better).
 - Small hardware overhead.

Previous Work

Contribution	Initialization	Propagation	
[Kocher03]	DES	DES	
[MSGR10]	Modular Multiplication		
[GFM10]	NLM and AES	AES	
[Kocher11]	Tree structure of Hashing	Hashing	
[MSJ12]	Improved tree of AES		
[BSH13]	Minimum SP Network		
Current Proposal	NLFSR-based sch	neme	

- They are all:
 - High cost.
 - Or, depend on other hardware protections.

Current Proposal

- Why NLFSR?
 - High DPA-attack complexity.

Current DPA attack on Grain leaves 30 bits of the key for exhaustive search [FGKV07].

- High diffusion and one-wayness.
- High non-linearity.
- Low hardware overhead, as learned from the eSTREAM results.
- What are the preferred properties of the NLFSR for the best DPA-protection?

- 1st input bit:
 - One sensitive variable of high leakage.

The output of the feedback function can be found.

- 1st input bit.
- 2nd input bit:

- 1st input bit.
- 2nd input bit:
 - Sensitive variable of high leakage.

The output of the feedback function can be found.

- 1st input bit.
- 2nd input bit:
 - Sensitive variable of high leakage.

The output of the feedback function can be found.

– Sensitive variable of <u>low</u> leakage.

Intermediate unknown can be found.

- 1st input bit.
- 2nd input bit:
 - Sensitive variable of high leak
 - The output of the feedback function
 - Sensitive variable of <u>low</u> leaka
 Intermediate unknown can be foun
 Is it useful? depends on the computer

Is it useful? depends on the computational hierarchy.

- 1st input bit.
- 2nd input bit.
- nth input bit:
 - A linear equation of n unknowns.

- 1st input bit.
- 2nd input bit.
- nth input bit:
 - A linear equation of n unknowns.

LFSRs are directly breakable after reaching all state bits

- 1st input bit:
 - One sensitive variable of high leakage.

The output of the feedback function can be found.

- 1st input bit.
- 2nd input bit: Operation at the known bit:

- 1st input bit.
- 2nd input bit: Operation at the known bit:
 - XOR: The output of the feedback function can be found. Intermediate unknown can be found. Is it useful?
 - AND: Only the intermediate unknown (<u>low leakage</u>) can be found.

Is it useful? depends on the computational hierarchy.

- 1st input bit.
- 2nd input bit: Operation at the known bit:
 - XOR: The output of the feedback function can be found. Intermediate unknown can be found. Is it useful?
 - AND: Only the intermediate unknown (<u>low leakage</u>) can be found.

Is it useful? depends on the computational hierarchy.

- 1st input bit.
- 2nd input bit.
- nth input bit:
 - Only an intermediate variable within the feedback function

- 1st input bit.
- 2nd input bit.
- nth input bit:
 - Only an intermediate variable within the feedback function

NLFSRs can still be broken by focusing on small operations within the feedback function

• Solution:

Implement the feedback function in memory.

- Preferred properties:
 - Large internal state.
 - High number of feedback taps.
 - Feedback function includes the first state bit.
 - Either:
 - The first bit is ANDed at the top of computational hierarchy.
 - Or, the feedback function is implemented using memory.
 - Maximum period.

Comparison between NLFSRs

	Grain	Trivium	KeeLoq	[D12]	[RSWZ12]	Best
Internal State	80	288	32	4:24	25,27	27
Feedback taps	13	3*5	7	3:7	18:21	21
Include 1 st bit	No	No	Yes	Yes	Yes	Yes
1 st bit ANDed	No	No	Yes	No	No	No
Maximum period	?	?	?	Yes	Yes	Yes

Comparison between NLFSRs

	Grain	Trivium	KeeLoq	[D12]	[RSWZ12]	Best
Internal State	80	288	32	4:24	25,27	27
Feedback taps	13	3*5	7	3:7	18:21	21
Include 1 st bit	No	No	Yes	Yes	Yes	Yes
1 st bit ANDed	No	No	Yes	No	No	No
Maximum period	?	?	?	Yes	Yes	Yes

• The best available NLFSR is still not optimal.

Current Work

- Choose a new feedback function.
- Increase the parallelism.
- Implementation
- Practical DPA attack.

Future Work

- Include the DPA-protection in a new AE mode
 - Most modes of operation including major AE modes keep the Key as a constant.
 - Updating the Key can provide a free DPA-protection in new designs.

Auth Tag

Concluding Remaks

- DPA-protection can be achieved by a special mode of operation.
- We propose a light-weight primitive that can achieve a high level of DPA security.
- We are working on including the DPA-protection in a new AE mode.

Collaborations are welcomed

Thank You Questions?

