AEAD Ciphers for Highly Constrained Networks

René Struik

e-mail: rstruik.ext@gmail.com

- 1. Highly Constrained Networks
 - Examples & Use Case Scenarios
 - Constraints
- 2. Efficient Crypto Constructs
 - AEAD Ciphers
 - Layering Aspects
- 3. Maintaining State
 - Per-Layer Keys, Nonces, & AEADs
 - "Re-use" Across Layers
- 4. Implementation Cost
 - Cost of Single Construct
 - Incremental Cost
- 5. Conclusions & Future Directions

Highly Constrained Networks

- Examples & Use Case Scenarios
- Constraints

August 13, 2013

DIAC 2013

René Struik (Struik Security Consultancy)

The Promise of Wireless The Economist, April 28, 2007

René Struik (Struik Security Consultancy)

Examples of Sensor and Control Networks

- Consumer Electronics
- PC Peripherals, Toys, and Gaming
- Industrial Process Control & Factory Automation
- Smart Metering
- Building Automation & Control (HVAC)
- Supply Chain Management
- Asset Tracking & Localization
- Homeland Security
- Environmental Monitoring
- Healthcare & Remote Patient Monitoring

Catch phrase: "Internet of Things"

2008: more "things" connected to Internet than people 2020: est. more than 31B ^[1] -50B ^[2] interconnected objects

^[1] Intel (September 11, 2011);
^[2] Cisco (July 15, 2011);
^[3] US DOE Roadmap (2006)

Benefit wireless industrial sensors ^[3]:

◆ Efficiency gain: 25% ◆ emission reduction: 10% ◆ significant reduction 'wiring cost'

Wireless Networking Standards

- Wireless Local Area Networks (WLANs)
- IEEE 802.11 family (WiFi Alliance)
- Mesh Networking (802.11s)
- Fast Authentication (802.11ai)
- WiFi Alliance

Wireless Personal Area Networks (WPANs)

- 802.15.1 (Bluetooth Alliance)
- 802.15.4 (ZigBee Alliance, Wireless HART, ISA SP100.11a)
- 802.15.6 ("Body Area Networks")
- Bluetooth 'Lite'
- Body Area Networks

Networking IETF:

```
• Routing (RoLL), Applications (CoRE), Home Area Networking (HomeNet)
```

Other:

- Ubiquitous Computing
- DRM, Networked Gaming
- NFC Forum
- e-Payments

[...]

Constraints (1)

Constraints for Sensor Networks

High throughput is not essential, but rather

Low energy consumption:

Lifetime of 1 year with 2 AAA batteries (@750 mAh, 2V) yields 85μ A average power consumption, thus forcing 'sleepy' devices (802.15.4 uses 40-60 mW for Tx/Rx)

Low manufacturing cost:

Low cost devices force small memory, limited computing capabilities (clock frequency: 4-16 Mhz; 10-32 kbytes ROM, 1-4 kbytes RAM, possibly no flash)

Constraints for Adhoc Networks

- <u>No centralized management:</u> No online availability of fixed infrastructure (so, decentralized key management)
- Promiscuous behavior:

Short-lived communications between devices that may never have met before (so, trust establishment and maintenance difficult)

Unreliability:

Devices are cheap consumer-style devices, without physical protection (so, no trusted platform on device)

Constraints (2)

Security Constraints for Adhoc Networks

- <u>Decentralized key management:</u>
 Due to no online availability fixed infrastructure, but also very 'sleepy' nodes
- <u>Flexible configuration and trust management:</u>
 Due to promiscuous, adhoc behavior, but also survivability requirements
- Low impact of key compromise:
 Due to unavailability of trusted platform (tamper-proofing, etc.)
- <u>Automatic lifecycle management:</u>
 Due to virtual absence of human factor, after initialization

Security Design Constraints for Sensor Networks

- Implementation efficiency: protocols should use similar cryptographic building blocks
- Parallelism: design protocols have the similar message flows
- Low communication overhead: protocols must avoid message expansion if possible

Efficient Crypto Constructs

- AEAD Ciphers
- Layering Aspects

Communication and Computational Overhead Matters

Communication cost savings: 8 octets = $256\mu s$ latency= $2.56\mu J$ (+14% energy efficiency) Computational cost (in HW): AES-128 $\approx 0.2\mu J$

 $\begin{array}{c} \textit{Trade-off: Reduced communication cost} \leftrightarrow \textit{Increased computational cost} (\& \textit{latency})\\ \text{Slide 11} & \text{René Struik (Struik Security Consultancy)} \end{array}$

Light-Weight Crypto Mode of Operation

Are we focusing on the right problem?

Light-weight crypto:

- Focus on low-footprint, low-latency ciphers (Present, Hummingbird, etc.)
- From energy consumption perspective, mode of operation more important

Typical frame: 60 octets. Cost: 2,120 μ s = 200 μ s (listen) + 1,920 μ s (60×32 μ s) = 21.2 μ J Communication cost savings: 8 octets = 256 μ s latency=2.56 μ J (+14% energy efficiency) Computational cost (in HW): AES-128 ≈ 0.2 μ J

Cost of crypto: 1% of communication cost

Trade-off: Reduced communication cost \leftrightarrow Increased computational cost (& latency)

Example:

• Shaving off 8 octets may justify making symmetric-key crypto 10× more expensive

Network Layering, Protocols, Interfaces

Network Layering, without Crypto

Crypto ON (Conf. & Auth.)

Network Layering, with Traditional Crypto

Network Communications, with Traditional Crypto

Example: Triple-Layer Crypto

via Message Authentication Code, but at a cost (data expansion)

Network Layering, with "NEW" Crypto

Network Communications, with "NEW" Crypto

Example: Triple-Layer Crypto

Incoming Processing, with "NEW" Crypto

"New" Crypto Mode of Operation

Applications to cryptographic protocol layering

- Significant reduction in cryptographic data expansion at lower layers
- No¹ cryptographic rejection of modified packets "in flight"
- Still possible to reject corrupted packets "in flight", if protocol layers have built-in redundancy that can easily be checked (usually the case, due to header info, etc.)

Example: ZigBee per-packet Security Overhead Reduction

Total security expansion ZigBee: 34 octets = 22 (NWK layer) + 12 (APL layer)

- Reduction of per-packet crypto/security overhead, to *at most* 8 octets in total only
- Potential for significant other header overhead reduction (non-security-related) Much more payload data left for application data (\approx 50% more, without fragmentation) *Caveat:* Cannot be realized with existing CCM* mode of operation implementation

Other applications: "storage encryption", "key wrap"

Cryptographic property: Encryption with Authenticity from Redundancy in Plaintext <u>Requirements:</u> (a) Works also with tiny plaintext; (b) Respects existing hardware

¹ Some cryptographic rejection possible, if some redundancy sprinkled-in (e.g., by padding with fixed 16-bit string)

Maintaining State

- Per-Layer Keys, Nonces, & AEADs
- "Reuse" Across Layers

Network Layering, with Crypto Modes of Operation

August 13, 2013

DIAC 2013

Unit

Network Layering, with Traditional Layering of Keying Material

Example: Triple-Layer Crypto

Layer

August 13, 2013

DIAC 2013

Unit

Network Layering, with Light-Weight Layering of Keying Material

Example: Triple-Layer Crypto

Layer

Each layer reuses *same* keying material (key, nonces), but does <u>salt</u> this at each layer (reduced key storage & key management)

Light-Weight Layering of Keying Material

Applications to cryptographic protocol layering

- Keying material (keys, nonces) stored on per-device level, <u>*not*</u> on per-layer level
- Re-use of <u>same</u> keying material and same AEAD across layers, with per-layer "salting" of AEAD instantiation

Example: OCB mode with variable-size authentication tags:

- OCB w/ 128-bit tag: Nonce128 = $(tag128 \parallel Nonce)$
- OCB w/ 64-bit tag: Nonce $64 = (tag 64 \parallel Nonce)$

Note: See IETF CFRG draft draft-cfrg-ocb-03 (with cautionary language...)

Cryptographic property: Instantiation of "salted" AEAD modes has same effect *as if* logically distinct keying material and AEAD parameters used at each layer <u>Requirements:</u> (a) Small-size "Salt"; (b) "Salting" cheap (compared to, e.g., hashing)

Implementation Cost

- Cost of Single Construct
- Incremental Cost

(Some)

Putting Trust in Devices

Conventional Approach

- Trusted implementation of crypto, including side channel resistance
- Trusted security policy routines
- Secure and authentic key storage
- Secure RNG (or RNG seed)
- 1. Borrow/steal across layers:
 - "Reuse" crypto primitives
 - "Reuse" keying material
- 2. Borrow/steal functionality other constructs:
 - Intel PCLMULQDQ Instruction
 - Non-crypto support on module
- 3. Exploit trade-offs:
 - Energy cost computation, communication

Applications

Device

Conclusions & Future Directions

Conclusions & Future Directions

Light-Weight Crypto:

- Performance Crypto Mode of Operation is right metric, *not* Crypto Cipher
- Energy cost *very* important (e.g., in energy harvesting applications)
- Crypto cost should *not* ignore cost of data expansion (in small packet deployments)
 - Authentication tags may be "evil" (authenticity is *not*)

Constrained Devices:

- Focus on performance individual construct (e.g., "*need for speed*") less important in constrained networks; holistic/system-wide performance is right metric
- Reuse, reuse, reuse... amongst crypto constructs, keying material, stack layers, ...

Be aware of eco-system that is under development (IETF 6lowpan, roll, core, dice)

Collaboration? Happy to!

I have worked on ciphers for constrained networks, but still lots of work remaining

- Better efficiency, simple proofs, algorithmic tricks, real implementations
- Both inside/outside CAESAR competition

Further Reading

Cryptographic Modes of Operation:

- 1. P. Rogaway, M. Bellare, "Encode-then-Encipher Encryption: How to Exploit Nonces or Redundancy in Plaintexts for Efficient Cryptography," in *AsiaCrypt'00*, T. Okamoto, Ed., Lecture Notes in Computer Science, Vol. 1976, Springer, 2000.
- J.H. An, M. Bellare, "Does Encryption with Redundancy Provide Authenticity?," in *EUROCRYPT'01*, B. Pfitzmann, Ed., Lecture Notes in Computer Science, Vol. 2045, pp. 512-528, Springer, 2001.

Finite Field Arithmetic:

- 3. S. Gueron, M.E. Kounavis, "Carry-Less Multiplication and Its Usage for Computing The GCM Mode," softwarecommunity.intel.com, No. 3787, April 11, 2008.
- J. Taverne, A. Faz-Hernández, D.F. Aranha, F. Rodríguez-Henríquez, D. Hankerson, J. López,
 "Software Implementation of Binary Elliptic Curves: Impact of the Carry-less Multiplier on Scalar Multiplication," IACR ePrint 2011-170.