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Introduction: Stream ciphers

• Keystream generator for a stream cipher
– Inputs: secret key K and public IV
– Outputs: Pseudorandom binary sequence

• Sequence commonly used as keystream for binary 
additive stream cipher to provide confidentiality
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Introduction: Stream ciphers
• Keystreams also used for integrity applications
• Stream ciphers providing authenticated encryption (AE) 

use binary sequences for both confidentiality and integrity
• These sequences can be produced by: 

a) the same keystream generator 
b) different keystream generators
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Introduction: 
Stream ciphers and MAC generation

• Phases of MAC generation:
1.Preparation:

• Initialise the internal state of the integrity components of the
device

• Prepare the input message: may involve appending  padding 
bits to either end of message

• NOTE: for AE, message may be plaintext or ciphertext

2.Accumulation: 
• Iterative process where input message used to accumulate 

values in the internal state of the integrity component

3.Finalisation:
• Complete the processing of MAC tag (possible masking)
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Introduction: 
Stream ciphers and MAC generation

• Q: How do stream ciphers use the message in the 
accumulation phase?
– Message dependent updating of internal state of 

integrity component  
– Two approaches to this:

1.Directly: using message content as an input into 
the internal state component

2.Indirectly: using the message content to control 
accumulation of some unknown keystream into an 
internal state component
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Introduction:
AE Stream ciphers and MAC security

• Consider security against forgery attacks:
– Assume keystream sequences are pseudorandom
– Consider a Man-In-The-Middle attacker who can: 

• Intercept transmission of M and MACK,IV(M), and 
• Modify M and possibly also MACK,IV(M):

– Flip, delete or insert bits in M, 
– Alter bits in MACK,IV(M)

– Forgery succeeds if attacker can produce valid pair:  
M’ and MACK,IV(M’)
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Indirect injection

• Modelling the integrity component:
– Two registers, R and A, same length as MAC: d bits
– Two inputs: message M and keystream sequence y
– M used to control values from R accumulated in A
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Indirect injection

• During accumulation:
– Register R update:

• Sliding window on keystream

– Register A update:
• Message dependent 
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Indirect injection: examples

• Stream cipher based MACs using indirect injection:
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Indirect injection: matrix representation

• Consider contents of register A at time i:
– Each stage of A contains a message dependent 

linear combination of values previously in register R, 
combined with the initial values in A:



CRICOS No. 00213Ja university for the worldreal
R

Indirect injection: matrix representation

• Computing the MAC for an input message of 
length l:
– Compute the value in the accumulation register A
– Combine with (optional) final mask

• NOTE: really only need to consider two aspects: 
– the accumulation phase, and 
– the linear combination of A0 and F



CRICOS No. 00213Ja university for the worldreal
R

Indirect injection: security analysis
• Analysis of the accumulation phase only:

• Bit flipping forgeries:
– Forge MAC(M’) by flipping appropriate bit/s in MAC(M)
– For known R0 attacker can flip:

• first bit of M and forge valid MAC with probability 1
• first 2 bits of M and forge valid MAC with probability ½
• first i bits of M and forge valid MAC with probability 2-i



CRICOS No. 00213Ja university for the worldreal
R

Indirect injection: security analysis
• Analysis of the accumulation phase only:

• Bit deletion forgeries:
– Forge MAC(M’) by shifting MAC(M) and guessing appropriate bit/s
– For known R0 attacker can delete:

• first bit of M and forge valid MAC with probability ½
• first 2 bits of M and forge valid MAC with probability ¼
• first i bits of M and forge valid MAC with probability 2-i

– Similarly, can forge MACs for unknown R0 but known M by 
deleting leading/trailing zeroes 
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Indirect injection: security analysis
• Analysis of the accumulation phase only:

• Bit insertion forgeries:
– For any R0, 

• Can insert zeroes at the end of M:
– Does not change accumulated value, so MAC(M’) = MAC(M) 
– Forge valid MAC with probability 1 

• Can insert zeroes at the start of M
– Forge MAC(M’) by shifting MAC(M) and guessing appropriate bit/s
– Insert one zero - forge valid MAC with probability ½
– Insert i zeroes - forge valid MAC with probability 2-i

– For known R0 can insert 1’s at start (Forge MAC(M’) by shift & guessing)
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Indirect injection: security analysis

• Analysis of the masking phase:
– Forgeries involving insertions or deletions at the start of the 

message rely on the sliding property of TlMl

• Prevent the MAC tag sliding by by initialising A with bits from a fixed 
position, such as the start of the keystream sequence y

– Forgeries involving zeroes inserted or deleted at the end of the 
message rely on the these zeroes having no effect on the 
accumulated value

• Choice of A0 does not prevent this

• Prevent by using unknown mask that depends on message length

– Choices for A0 and F provide effective means to prevent bit 
insertion and deletion attacks



CRICOS No. 00213Ja university for the worldreal
R

Indirect injection: ZUC

• 128-EIA3 based on ZUC
– Prep phase: input message padded with a 1 at end
– Finalisation phase: final mask from same sequence, 

as accumulation, but segment not previously used 
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Indirect injection: ZUC
• Matrix representation: MAC tag for 128-EIA3 Version 1.4

• Fuhr et al, 2012
– Possible forgery if zero inserted at start of message
– Forge MAC from existing by shifting and guessing bit

• Our work, 2012
– For messages with leading zeroes, possible to delete zeroes and 

forge MACs by shifting and guessing
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Direct injection
• Model for the integrity component:

– Consider simple case: accumulation component is 
single register

– Aspects to consider: 
• component state update function
• how and where message inputs are injected

– We extend the Nakano et al. 2011 model for stream 
cipher-based hash functions:

• Hash function based on nonlinear filter generator
• Uses structure of generator, but hash function is unkeyed
• State update function includes both: 

– LFSR update, and 
– nonlinear filter feedback
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Direct injection: examples

• SOBER family of stream cipher based MACs or 
MAC components use direct injection:

Cipher Date MAC 
size

Message Initialisation Finalisation

SOBER
-128

2003 32 bits plaintext if 
transmission 
is ciphertext 

keystream Nonlinear

SSS 2005 ≤ 128 plaintext keystream Encrypts MAC

NLSv2 2006 variable plaintext keystream 2 components
combined
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Direct injection

• Accumulation using nonlinear filter generator
– Inject message and filter output into LFSR

• Consider where input will be injected (which stages)
• Consider how input will be injected (combine or replace)
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Direct injection: matrix representation

• For autonomous LFSR: At+1 = C At where 

• Extend to include injection of message and/or 
nonlinear filter output bit by combining:
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Direct injection: matrix representation

• In the accumulation phase, as the message is 
processed the contents of register A are updated: 

• Matrix representation for this:

• where 
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Direct injection: matrix representation

• At the end of accumulation phase:
AL = CLA0 ⊕ KmML–1 ⊕ KzZL–1

• For injection performed by replacing stage contents with 
feedback, rather than combining, can construct a similar 
matrix model:
– Modify matrix C by changing relevant 1 to 0.
– Also affects definitions of Km and Kz

• Matrix model also permits mixtures of combining / 
replacing
– Through choices for entries in state update matrix C
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Direct injection: security analysis

• Analyse matrix model for possible collisions 
obtained through manipulating contents of M
– If M and M’ produce same AL then forgery possible
– Assume A0 is unknown

• NOTE: MAC(M) is reproducible if M and A0 are both known, 
consider this for completeness 

• Consider two cases:
1. Message injection by combining
2. Message injection with replacement
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Direct injection: security analysis

• 1. Message injection by combining
– 2 subcases: is nonlinear filter output z injected into 

state?

– Case 1: z is not injected: then AL = CLA0 ⊕ KmML–1
– Theorem:  the final d columns of Km form a basis for 
U = {Ciσm | i ≥ 0} = column space of Km

⇒ if L > d, can always force collisions:
• the results of any changes to the first L–d words of the 

message can be reversed by a suitable set of changes to the 
final d words

– Applies whether A0 is known or not (due to linearity)
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Direct injection: security analysis

• 1. Message injection by combining (cont’d)
– Case 2: z injected: then AL = CLA0 ⊕ KmML–1 ⊕ KzZL–1

a) If ML–1, A0 known, σm = σz → Km = Kz

• zt known at each step, so adjust mt by –zt to obtain forgery 
as before

b) If ML–1, A0 known, σm ≠ σz → Km ≠ Kz

• now zt, mt affect different stages: can’t adjust for zt

c) If ML–1 and/or A0 unknown
• now zt unknown, so can’t adjust for it
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Direct injection: security analysis

• Now consider message injection with some 
replacing:
– Arguments for 

• Case 1: Z injected, and 
• Case 2: Z not injected

apply as before, except that the dimension of the 
column space is reduced 

– This means that only a reduced basis is required to 
guarantee forgeries in Cases 1 and 2a 

• see SOBER-128 example later
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Direct injection: security analysis

• Summary of analysis

Case
Nonlinear 

filter
M / A0

Other 
condition

Forced 
collisions

?
Overall outcome

1 not used any — Yes not secure 
(collisions)

2a used both known σm = σz Yes not secure 
(collisions)

2b used both known σm ≠ σz Unlikely not secure – other

2c used either 
unknown

— No secure

31
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Direct injection: security analysis

• Nakano et al. model for hash functions:
– bit based LFSR with known (zero) initial state 
– message (plaintext) known

• Hash function model considered two configurations 
with σm = σz and combining into register:

1. into final stage a[d–1] only
2. into r regularly spaced stages

• Both configurations are Case 2a, 
– Therefore collisions can be forced in both cases – contrary 

to their claim for (2)

32
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Direct injection: security analysis

• Several members of the Sober stream cipher family 
include a MAC component that fits our model:
– SOBER-128: 

• replacing Case 2c: accumulation should be secure but 
nonlinear filter is weak

– SSS: 
• combining Case 1 ⇒ accumulation insecure 
• but MAC secure as cipher self-synchronous

– NLSv2: 
• combining Case 1 ⇒ accumulation insecure 
• but has second (n.l.) accumulation

33
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Summary

• Can generate MAC tags using stream ciphers by 
injecting the input message (plaintext or ciphertext) 
– Indirectly
– Directly

• Matrix model for the accumulation phase facilitates 
analysis of potential forgeries 
– that do not require knowledge of the keystream

• Different options available for preparation and finalization 
phases of MAC generation 
– Security implications associated with these options with respect

to forgery attacks
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