
CRICOS No. 00213Ja university for the worldreal
R

Investigating the security properties
of MACs based on stream ciphers

Leonie Simpson, Mufeed Al Mashrafi, Harry Bartlett, Ed
Dawson and Kenneth Wong

Institute for Future Environments
Science and Engineering Faculty

Queensland University of Technology
Brisbane, Australia

CRICOS No. 00213Ja university for the worldreal
R

Outline

• Introduction
• Indirect injection

– Matrix Representation
– Security Analysis
– Examples

• Direct injection
– Matrix representation
– Security analysis
– Examples

• Summary

CRICOS No. 00213Ja university for the worldreal
R

Introduction: Stream ciphers

• Keystream generator for a stream cipher
– Inputs: secret key K and public IV
– Outputs: Pseudorandom binary sequence

• Sequence commonly used as keystream for binary
additive stream cipher to provide confidentiality

CRICOS No. 00213Ja university for the worldreal
R

Introduction: Stream ciphers
• Keystreams also used for integrity applications
• Stream ciphers providing authenticated encryption (AE)

use binary sequences for both confidentiality and integrity
• These sequences can be produced by:

a) the same keystream generator
b) different keystream generators

CRICOS No. 00213Ja university for the worldreal
R

Introduction:
Stream ciphers and MAC generation

• Phases of MAC generation:
1.Preparation:

• Initialise the internal state of the integrity components of the
device

• Prepare the input message: may involve appending padding
bits to either end of message

• NOTE: for AE, message may be plaintext or ciphertext

2.Accumulation:
• Iterative process where input message used to accumulate

values in the internal state of the integrity component

3.Finalisation:
• Complete the processing of MAC tag (possible masking)

CRICOS No. 00213Ja university for the worldreal
R

Introduction:
Stream ciphers and MAC generation

• Q: How do stream ciphers use the message in the
accumulation phase?
– Message dependent updating of internal state of

integrity component
– Two approaches to this:

1.Directly: using message content as an input into
the internal state component

2.Indirectly: using the message content to control
accumulation of some unknown keystream into an
internal state component

CRICOS No. 00213Ja university for the worldreal
R

Introduction:
AE Stream ciphers and MAC security

• Consider security against forgery attacks:
– Assume keystream sequences are pseudorandom
– Consider a Man-In-The-Middle attacker who can:

• Intercept transmission of M and MACK,IV(M), and
• Modify M and possibly also MACK,IV(M):

– Flip, delete or insert bits in M,
– Alter bits in MACK,IV(M)

– Forgery succeeds if attacker can produce valid pair:
M’ and MACK,IV(M’)

CRICOS No. 00213Ja university for the worldreal
R

Outline

• Introduction
• Indirect injection

– Matrix Representation
– Security Analysis
– Examples

• Direct injection
– Matrix representation
– Security analysis
– Examples

• Summary

CRICOS No. 00213Ja university for the worldreal
R

Indirect injection

• Modelling the integrity component:
– Two registers, R and A, same length as MAC: d bits
– Two inputs: message M and keystream sequence y
– M used to control values from R accumulated in A

CRICOS No. 00213Ja university for the worldreal
R

Indirect injection

• During accumulation:
– Register R update:

• Sliding window on keystream

– Register A update:
• Message dependent

CRICOS No. 00213Ja university for the worldreal
R

Indirect injection: examples

• Stream cipher based MACs using indirect injection:

CRICOS No. 00213Ja university for the worldreal
R

Indirect injection: matrix representation

• Consider contents of register A at time i:
– Each stage of A contains a message dependent

linear combination of values previously in register R,
combined with the initial values in A:

CRICOS No. 00213Ja university for the worldreal
R

Indirect injection: matrix representation

• Computing the MAC for an input message of
length l:
– Compute the value in the accumulation register A
– Combine with (optional) final mask

• NOTE: really only need to consider two aspects:
– the accumulation phase, and
– the linear combination of A0 and F

CRICOS No. 00213Ja university for the worldreal
R

Indirect injection: security analysis
• Analysis of the accumulation phase only:

• Bit flipping forgeries:
– Forge MAC(M’) by flipping appropriate bit/s in MAC(M)
– For known R0 attacker can flip:

• first bit of M and forge valid MAC with probability 1
• first 2 bits of M and forge valid MAC with probability ½
• first i bits of M and forge valid MAC with probability 2-i

CRICOS No. 00213Ja university for the worldreal
R

Indirect injection: security analysis
• Analysis of the accumulation phase only:

• Bit deletion forgeries:
– Forge MAC(M’) by shifting MAC(M) and guessing appropriate bit/s
– For known R0 attacker can delete:

• first bit of M and forge valid MAC with probability ½
• first 2 bits of M and forge valid MAC with probability ¼
• first i bits of M and forge valid MAC with probability 2-i

– Similarly, can forge MACs for unknown R0 but known M by
deleting leading/trailing zeroes

CRICOS No. 00213Ja university for the worldreal
R

Indirect injection: security analysis
• Analysis of the accumulation phase only:

• Bit insertion forgeries:
– For any R0,

• Can insert zeroes at the end of M:
– Does not change accumulated value, so MAC(M’) = MAC(M)
– Forge valid MAC with probability 1

• Can insert zeroes at the start of M
– Forge MAC(M’) by shifting MAC(M) and guessing appropriate bit/s
– Insert one zero - forge valid MAC with probability ½
– Insert i zeroes - forge valid MAC with probability 2-i

– For known R0 can insert 1’s at start (Forge MAC(M’) by shift & guessing)

CRICOS No. 00213Ja university for the worldreal
R

Indirect injection: security analysis

• Analysis of the masking phase:
– Forgeries involving insertions or deletions at the start of the

message rely on the sliding property of TlMl

• Prevent the MAC tag sliding by by initialising A with bits from a fixed
position, such as the start of the keystream sequence y

– Forgeries involving zeroes inserted or deleted at the end of the
message rely on the these zeroes having no effect on the
accumulated value

• Choice of A0 does not prevent this

• Prevent by using unknown mask that depends on message length

– Choices for A0 and F provide effective means to prevent bit
insertion and deletion attacks

CRICOS No. 00213Ja university for the worldreal
R

Indirect injection: ZUC

• 128-EIA3 based on ZUC
– Prep phase: input message padded with a 1 at end
– Finalisation phase: final mask from same sequence,

as accumulation, but segment not previously used

CRICOS No. 00213Ja university for the worldreal
R

Indirect injection: ZUC
• Matrix representation: MAC tag for 128-EIA3 Version 1.4

• Fuhr et al, 2012
– Possible forgery if zero inserted at start of message
– Forge MAC from existing by shifting and guessing bit

• Our work, 2012
– For messages with leading zeroes, possible to delete zeroes and

forge MACs by shifting and guessing

CRICOS No. 00213Ja university for the worldreal
R

Outline

• Introduction
• Indirect injection

– Matrix Representation
– Security Analysis
– Examples

• Direct injection
– Matrix representation
– Security analysis
– Examples

• Summary

CRICOS No. 00213Ja university for the worldreal
R

Direct injection
• Model for the integrity component:

– Consider simple case: accumulation component is
single register

– Aspects to consider:
• component state update function
• how and where message inputs are injected

– We extend the Nakano et al. 2011 model for stream
cipher-based hash functions:

• Hash function based on nonlinear filter generator
• Uses structure of generator, but hash function is unkeyed
• State update function includes both:

– LFSR update, and
– nonlinear filter feedback

CRICOS No. 00213Ja university for the worldreal
R

Direct injection: examples

• SOBER family of stream cipher based MACs or
MAC components use direct injection:

Cipher Date MAC
size

Message Initialisation Finalisation

SOBER
-128

2003 32 bits plaintext if
transmission
is ciphertext

keystream Nonlinear

SSS 2005 ≤ 128 plaintext keystream Encrypts MAC

NLSv2 2006 variable plaintext keystream 2 components
combined

CRICOS No. 00213Ja university for the worldreal
R

Direct injection

• Accumulation using nonlinear filter generator
– Inject message and filter output into LFSR

• Consider where input will be injected (which stages)
• Consider how input will be injected (combine or replace)

CRICOS No. 00213Ja university for the worldreal
R

Direct injection: matrix representation

• For autonomous LFSR: At+1 = C At where

• Extend to include injection of message and/or
nonlinear filter output bit by combining:

CRICOS No. 00213Ja university for the worldreal
R

Direct injection: matrix representation

• In the accumulation phase, as the message is
processed the contents of register A are updated:

• Matrix representation for this:

• where

CRICOS No. 00213Ja university for the worldreal
R

Direct injection: matrix representation

• At the end of accumulation phase:
AL = CLA0 ⊕ KmML–1 ⊕ KzZL–1

• For injection performed by replacing stage contents with
feedback, rather than combining, can construct a similar
matrix model:
– Modify matrix C by changing relevant 1 to 0.
– Also affects definitions of Km and Kz

• Matrix model also permits mixtures of combining /
replacing
– Through choices for entries in state update matrix C

CRICOS No. 00213Ja university for the worldreal
R

Direct injection: security analysis

• Analyse matrix model for possible collisions
obtained through manipulating contents of M
– If M and M’ produce same AL then forgery possible
– Assume A0 is unknown

• NOTE: MAC(M) is reproducible if M and A0 are both known,
consider this for completeness

• Consider two cases:
1. Message injection by combining
2. Message injection with replacement

CRICOS No. 00213Ja university for the worldreal
R

Direct injection: security analysis

• 1. Message injection by combining
– 2 subcases: is nonlinear filter output z injected into

state?

– Case 1: z is not injected: then AL = CLA0 ⊕ KmML–1
– Theorem: the final d columns of Km form a basis for
U = {Ciσm | i ≥ 0} = column space of Km

⇒ if L > d, can always force collisions:
• the results of any changes to the first L–d words of the

message can be reversed by a suitable set of changes to the
final d words

– Applies whether A0 is known or not (due to linearity)

CRICOS No. 00213Ja university for the worldreal
R

Direct injection: security analysis

• 1. Message injection by combining (cont’d)
– Case 2: z injected: then AL = CLA0 ⊕ KmML–1 ⊕ KzZL–1

a) If ML–1, A0 known, σm = σz → Km = Kz

• zt known at each step, so adjust mt by –zt to obtain forgery
as before

b) If ML–1, A0 known, σm ≠ σz → Km ≠ Kz

• now zt, mt affect different stages: can’t adjust for zt

c) If ML–1 and/or A0 unknown
• now zt unknown, so can’t adjust for it

CRICOS No. 00213Ja university for the worldreal
R

Direct injection: security analysis

• Now consider message injection with some
replacing:
– Arguments for

• Case 1: Z injected, and
• Case 2: Z not injected

apply as before, except that the dimension of the
column space is reduced

– This means that only a reduced basis is required to
guarantee forgeries in Cases 1 and 2a

• see SOBER-128 example later

CRICOS No. 00213Ja university for the worldreal
R

Direct injection: security analysis

• Summary of analysis

Case
Nonlinear

filter
M / A0

Other
condition

Forced
collisions

?
Overall outcome

1 not used any — Yes not secure
(collisions)

2a used both known σm = σz Yes not secure
(collisions)

2b used both known σm ≠ σz Unlikely not secure – other

2c used either
unknown

— No secure

31

CRICOS No. 00213Ja university for the worldreal
R

Direct injection: security analysis

• Nakano et al. model for hash functions:
– bit based LFSR with known (zero) initial state
– message (plaintext) known

• Hash function model considered two configurations
with σm = σz and combining into register:

1. into final stage a[d–1] only
2. into r regularly spaced stages

• Both configurations are Case 2a,
– Therefore collisions can be forced in both cases – contrary

to their claim for (2)

32

CRICOS No. 00213Ja university for the worldreal
R

Direct injection: security analysis

• Several members of the Sober stream cipher family
include a MAC component that fits our model:
– SOBER-128:

• replacing Case 2c: accumulation should be secure but
nonlinear filter is weak

– SSS:
• combining Case 1 ⇒ accumulation insecure
• but MAC secure as cipher self-synchronous

– NLSv2:
• combining Case 1 ⇒ accumulation insecure
• but has second (n.l.) accumulation

33

CRICOS No. 00213Ja university for the worldreal
R

Summary

• Can generate MAC tags using stream ciphers by
injecting the input message (plaintext or ciphertext)
– Indirectly
– Directly

• Matrix model for the accumulation phase facilitates
analysis of potential forgeries
– that do not require knowledge of the keystream

• Different options available for preparation and finalization
phases of MAC generation
– Security implications associated with these options with respect

to forgery attacks

CRICOS No. 00213Ja university for the worldreal
R

References
• Mufeed Almashrafi, Harry Bartlett, Leonie Simpson, Ed Dawson and

Kenneth Wong. Analysis of indirect message injection for
MAC generation using stream ciphers. In 17th Australasian
Conference on Information Security and Privacy (ACISP 2012), vol
7372 of Lecture Notes in Computer Science, pages 138-151,
Springer, Heidelberg (2012).

• Harry Bartlett, Mufeed Almashrafi, Leonie Simpson, Ed Dawson and
Kenneth Wong. A general model for MAC generation using
direct injection. In 8th China International Conference on
Information Security and Cryptology (INSCRYPT 2012), vol 7763 of
Lecture Notes in Computer Science, pages 198-215, Springer,
Heidelberg (2012).

• Mufeed Almashrafi, Harry Bartlett, Ed Dawson, Leonie Simpson and
Kenneth Wong. Indirect message injection for MAC
generation. to appear in Journal of Mathematical Cryptology

